Copied to
clipboard

G = C42.44C23order 128 = 27

44th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.44C23, C4.542+ 1+4, C89D412C2, C4⋊D837C2, C82D424C2, C87D438C2, C4⋊C4.364D4, Q86D48C2, Q8.Q834C2, D4⋊D444C2, (C2×D4).168D4, C2.47(D4○D8), C22⋊C4.47D4, C4⋊C4.407C23, C4⋊C8.100C22, (C2×C8).187C23, (C2×C4).501C24, Q8.21(C4○D4), (C2×D8).39C22, C23.320(C2×D4), SD16⋊C432C2, C4.Q8.54C22, C2.D8.58C22, C8⋊C4.41C22, (C4×D4).154C22, (C2×D4).231C23, C4⋊D4.80C22, C41D4.86C22, C22.D826C2, C22⋊C8.78C22, (C2×Q8).397C23, (C4×Q8).155C22, C2.137(D45D4), D4⋊C4.70C22, C23.24D417C2, C23.19D430C2, C23.36D416C2, (C22×C8).306C22, (C2×SD16).53C22, C22.761(C22×D4), C42.C2.38C22, C2.83(D8⋊C22), C22.47C244C2, C42.29C228C2, (C22×C4).1145C23, Q8⋊C4.160C22, C42⋊C2.187C22, (C2×M4(2)).110C22, C4.226(C2×C4○D4), (C2×C4).598(C2×D4), (C2×C4⋊C4).666C22, (C2×C4○D4).207C22, SmallGroup(128,2041)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.44C23
C1C2C4C2×C4C22×C4C2×C4○D4Q86D4 — C42.44C23
C1C2C2×C4 — C42.44C23
C1C22C4×D4 — C42.44C23
C1C2C2C2×C4 — C42.44C23

Generators and relations for C42.44C23
 G = < a,b,c,d,e | a4=b4=e2=1, c2=a2b2, d2=b2, ab=ba, cac-1=eae=a-1b2, dad-1=ab2, cbc-1=dbd-1=b-1, be=eb, dcd-1=bc, ece=a2b2c, ede=b2d >

Subgroups: 440 in 202 conjugacy classes, 86 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C422C2, C41D4, C41D4, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×C4○D4, C23.24D4, C23.36D4, C89D4, SD16⋊C4, D4⋊D4, C4⋊D8, C87D4, C82D4, Q8.Q8, C22.D8, C23.19D4, C42.29C22, Q86D4, C22.47C24, C42.44C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, D45D4, D8⋊C22, D4○D8, C42.44C23

Character table of C42.44C23

 class 12A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D8E8F
 size 11114488822224444444888444488
ρ111111111111111111111111111111    trivial
ρ21111-111-1-1111111-1-111-11-1-11111-1-1    linear of order 2
ρ3111111-1-111111-11111-111-11-1-1-1-1-1-1    linear of order 2
ρ41111-11-11-11111-11-1-11-1-111-1-1-1-1-111    linear of order 2
ρ51111-111-1111111-1-1-1-11-1-1-11-1-1-1-111    linear of order 2
ρ611111111-111111-111-111-11-1-1-1-1-1-1-1    linear of order 2
ρ71111-11-1111111-1-1-1-1-1-1-1-1111111-1-1    linear of order 2
ρ8111111-1-1-11111-1-111-1-11-1-1-1111111    linear of order 2
ρ91111-1-1-1-1-1-11-111-1-11-1111111-11-11-1    linear of order 2
ρ1011111-1-111-11-111-11-1-11-11-1-11-11-1-11    linear of order 2
ρ111111-1-111-1-11-11-1-1-11-1-111-11-11-11-11    linear of order 2
ρ1211111-11-11-11-11-1-11-1-1-1-111-1-11-111-1    linear of order 2
ρ1311111-1-11-1-11-11111-111-1-1-11-11-111-1    linear of order 2
ρ141111-1-1-1-11-11-1111-11111-11-1-11-11-11    linear of order 2
ρ1511111-11-1-1-11-11-111-11-1-1-1111-11-1-11    linear of order 2
ρ161111-1-1111-11-11-11-111-11-1-1-11-11-11-1    linear of order 2
ρ172222-22000-2-2-2-2002-2002000000000    orthogonal lifted from D4
ρ182222-2-20002-22-2002200-2000000000    orthogonal lifted from D4
ρ1922222-20002-22-200-2-2002000000000    orthogonal lifted from D4
ρ20222222000-2-2-2-200-2200-2000000000    orthogonal lifted from D4
ρ212-22-200000020-222i00-2i-2000002i0-2i00    complex lifted from C4○D4
ρ222-22-200000020-2-22i00-2i200000-2i02i00    complex lifted from C4○D4
ρ232-22-200000020-2-2-2i002i2000002i0-2i00    complex lifted from C4○D4
ρ242-22-200000020-22-2i002i-200000-2i02i00    complex lifted from C4○D4
ρ254-44-4000000-4040000000000000000    orthogonal lifted from 2+ 1+4
ρ2644-4-40000000000000000000220-22000    orthogonal lifted from D4○D8
ρ2744-4-40000000000000000000-22022000    orthogonal lifted from D4○D8
ρ284-4-4400000-4i04i00000000000000000    complex lifted from D8⋊C22
ρ294-4-44000004i0-4i00000000000000000    complex lifted from D8⋊C22

Smallest permutation representation of C42.44C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 60 30 23)(2 57 31 24)(3 58 32 21)(4 59 29 22)(5 40 47 27)(6 37 48 28)(7 38 45 25)(8 39 46 26)(9 63 50 42)(10 64 51 43)(11 61 52 44)(12 62 49 41)(13 18 36 53)(14 19 33 54)(15 20 34 55)(16 17 35 56)
(1 35 32 14)(2 15 29 36)(3 33 30 16)(4 13 31 34)(5 49 45 10)(6 11 46 50)(7 51 47 12)(8 9 48 52)(17 21 54 60)(18 57 55 22)(19 23 56 58)(20 59 53 24)(25 43 40 62)(26 63 37 44)(27 41 38 64)(28 61 39 42)
(1 25 30 38)(2 39 31 26)(3 27 32 40)(4 37 29 28)(5 58 47 21)(6 22 48 59)(7 60 45 23)(8 24 46 57)(9 15 50 34)(10 35 51 16)(11 13 52 36)(12 33 49 14)(17 43 56 64)(18 61 53 44)(19 41 54 62)(20 63 55 42)
(1 35)(2 15)(3 33)(4 13)(5 62)(6 44)(7 64)(8 42)(9 39)(10 25)(11 37)(12 27)(14 32)(16 30)(17 23)(18 59)(19 21)(20 57)(22 53)(24 55)(26 50)(28 52)(29 36)(31 34)(38 51)(40 49)(41 47)(43 45)(46 63)(48 61)(54 58)(56 60)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,60,30,23)(2,57,31,24)(3,58,32,21)(4,59,29,22)(5,40,47,27)(6,37,48,28)(7,38,45,25)(8,39,46,26)(9,63,50,42)(10,64,51,43)(11,61,52,44)(12,62,49,41)(13,18,36,53)(14,19,33,54)(15,20,34,55)(16,17,35,56), (1,35,32,14)(2,15,29,36)(3,33,30,16)(4,13,31,34)(5,49,45,10)(6,11,46,50)(7,51,47,12)(8,9,48,52)(17,21,54,60)(18,57,55,22)(19,23,56,58)(20,59,53,24)(25,43,40,62)(26,63,37,44)(27,41,38,64)(28,61,39,42), (1,25,30,38)(2,39,31,26)(3,27,32,40)(4,37,29,28)(5,58,47,21)(6,22,48,59)(7,60,45,23)(8,24,46,57)(9,15,50,34)(10,35,51,16)(11,13,52,36)(12,33,49,14)(17,43,56,64)(18,61,53,44)(19,41,54,62)(20,63,55,42), (1,35)(2,15)(3,33)(4,13)(5,62)(6,44)(7,64)(8,42)(9,39)(10,25)(11,37)(12,27)(14,32)(16,30)(17,23)(18,59)(19,21)(20,57)(22,53)(24,55)(26,50)(28,52)(29,36)(31,34)(38,51)(40,49)(41,47)(43,45)(46,63)(48,61)(54,58)(56,60)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,60,30,23)(2,57,31,24)(3,58,32,21)(4,59,29,22)(5,40,47,27)(6,37,48,28)(7,38,45,25)(8,39,46,26)(9,63,50,42)(10,64,51,43)(11,61,52,44)(12,62,49,41)(13,18,36,53)(14,19,33,54)(15,20,34,55)(16,17,35,56), (1,35,32,14)(2,15,29,36)(3,33,30,16)(4,13,31,34)(5,49,45,10)(6,11,46,50)(7,51,47,12)(8,9,48,52)(17,21,54,60)(18,57,55,22)(19,23,56,58)(20,59,53,24)(25,43,40,62)(26,63,37,44)(27,41,38,64)(28,61,39,42), (1,25,30,38)(2,39,31,26)(3,27,32,40)(4,37,29,28)(5,58,47,21)(6,22,48,59)(7,60,45,23)(8,24,46,57)(9,15,50,34)(10,35,51,16)(11,13,52,36)(12,33,49,14)(17,43,56,64)(18,61,53,44)(19,41,54,62)(20,63,55,42), (1,35)(2,15)(3,33)(4,13)(5,62)(6,44)(7,64)(8,42)(9,39)(10,25)(11,37)(12,27)(14,32)(16,30)(17,23)(18,59)(19,21)(20,57)(22,53)(24,55)(26,50)(28,52)(29,36)(31,34)(38,51)(40,49)(41,47)(43,45)(46,63)(48,61)(54,58)(56,60) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,60,30,23),(2,57,31,24),(3,58,32,21),(4,59,29,22),(5,40,47,27),(6,37,48,28),(7,38,45,25),(8,39,46,26),(9,63,50,42),(10,64,51,43),(11,61,52,44),(12,62,49,41),(13,18,36,53),(14,19,33,54),(15,20,34,55),(16,17,35,56)], [(1,35,32,14),(2,15,29,36),(3,33,30,16),(4,13,31,34),(5,49,45,10),(6,11,46,50),(7,51,47,12),(8,9,48,52),(17,21,54,60),(18,57,55,22),(19,23,56,58),(20,59,53,24),(25,43,40,62),(26,63,37,44),(27,41,38,64),(28,61,39,42)], [(1,25,30,38),(2,39,31,26),(3,27,32,40),(4,37,29,28),(5,58,47,21),(6,22,48,59),(7,60,45,23),(8,24,46,57),(9,15,50,34),(10,35,51,16),(11,13,52,36),(12,33,49,14),(17,43,56,64),(18,61,53,44),(19,41,54,62),(20,63,55,42)], [(1,35),(2,15),(3,33),(4,13),(5,62),(6,44),(7,64),(8,42),(9,39),(10,25),(11,37),(12,27),(14,32),(16,30),(17,23),(18,59),(19,21),(20,57),(22,53),(24,55),(26,50),(28,52),(29,36),(31,34),(38,51),(40,49),(41,47),(43,45),(46,63),(48,61),(54,58),(56,60)]])

Matrix representation of C42.44C23 in GL6(𝔽17)

400000
2130000
0013000
0001300
000040
000004
,
100000
010000
000100
0016000
0000016
000010
,
13160000
040000
0016000
000100
0000016
0000160
,
100000
010000
000010
000001
0016000
0001600
,
410000
2130000
0016000
0001600
000010
000001

G:=sub<GL(6,GF(17))| [4,2,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[13,0,0,0,0,0,16,4,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[4,2,0,0,0,0,1,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C42.44C23 in GAP, Magma, Sage, TeX

C_4^2._{44}C_2^3
% in TeX

G:=Group("C4^2.44C2^3");
// GroupNames label

G:=SmallGroup(128,2041);
// by ID

G=gap.SmallGroup(128,2041);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,758,723,352,346,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=a^2*b^2,d^2=b^2,a*b=b*a,c*a*c^-1=e*a*e=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b*c,e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations

Export

Character table of C42.44C23 in TeX

׿
×
𝔽